1. C 2. B 3. D 4. C 5. B 6. C 7. B 8. B 9. A 10. B 11. B 12. A 13. C 14. A 15. C 16. A 17. B

18. A

19.a) K =
$$\frac{[H_2][I_2]}{[HI]^2}$$
 b) K = $\frac{[Ca^{2+}][HF]^2}{[H^{1+}]^2}$

20. 1.50 L	v	0.55 mol	X	164 g
	л	1L		1 mol

1. Consider the phase diagram for water, shown at

the right and select the best statement:

- A) starting at 50 °C and 1 atm, as the pressure is decreased, the material will freeze
- B) starting at 0 °C and 0.5 atm, as pressure is increased, the material will condense
- C) starting at 50 °C and 2 atm, as the temperature is increased, the material will boil
- D) all of these will happen
- E) none of these will happen

- 2. Select the best statement regarding cubic unit cells
 - A) The face centered cubic has the largest coordination number and the least packing efficiency
 - B) The face centered cubic has the largest coordination number and the greatest packing efficiency
 - C) The simple cubic has the smallest coordination number and the greatest packing efficiency
 - D) The simple cubic has the largest coordination number and greatest packing efficiency
 - E) The body centered cubic has the smallest coordination number and the least packing efficiency
- 3. The picture at the right shows a unit cell of a compound made up of Na (white spheres), O (black spheres) and W (striped gray spheres). What is the chemical formula of this compound? A) NaO₈W₆ B) NaO₆W C) NaO₃W₂ D) NaO_3W E) NaO_6W_2 4. Note the following melting points (here, Ge is considered to be a non-metal): $GeOCl_2: -56 \ ^{\circ}C$ GeO_2 : 1115 °C GeH_4 : -165 °C $GeCl_4$: -49 °C In their solid state, how many of these materials would be molecular solids? A) 1 B) 2 C) 3 D) 4 E) 0 5. Select the material with the lowest melting point A) $COCl_2$ (C is central) C) HF D) SO_3 E) SiO₂ B) Ar 6. Consider the following reaction: $2 \operatorname{Co}_2 O_3(s) + 3 \operatorname{C}(s) \rightarrow 4 \operatorname{Co}(s) + 3 \operatorname{CO}_2(g)$ If 6 moles of Co₂O₃ react with 6 moles of C, how many moles of Co can be formed? A) 4 B) 6 C) 8 D) 12 E) 24
- 7. If the reaction in the previous question is endothermic, what can you say about the spontaneity?
 - A) The reaction is spontaneous at both high and low temperature
 - B) The reaction is spontaneous at high temperature, but non-spontaneous at low temperature
 - C) The reaction is non-spontaneous at high temperature, but spontaneous at *low* temperature
 - D) The reaction is non-spontaneous at both high and low temperature
- 8. A system's energy will increase when the system:
 - A) absorbs heat and does work
 - B) absorbs heat and has work done on it
 - C) releases heat and does work
 - D) releases heat and has work done on it

9. When water freezes,

- A) the value of ΔH is negative and the value of ΔS is negative
- B) the value of ΔH is negative and the value of ΔS is positive
- C) the value of ΔH is positive and the value of ΔS is negative
- D) the value of ΔH is positive and the value of ΔS is positive
- 10. During a reaction, a stronger bond breaks and a weaker bond forms. This reaction is most likely: A) exothermic
 - B) endothermic
- 11. Which of the following three statements describe a reaction at equilibrium?
 - #1) The rates of the forward and reverse reactions are equal
 - #2) The amounts of reactants and products are equal
 - #3) The amounts of reactants and products are no longer changing
 - A) #1 and #2 B) #1 and #3 C) #2 and #3 D) #2 only E) all three
- 12. Which of the following factors does NOT dictate reaction rates:
 - A) ΔH^{o}
 - B) activation energy
 - C) orientation of reacting molecules
 - D) temperature
 - E) concentration of reactants and products
- 13. What is the difference between ΔG and ΔG° ?
 - A) ΔG° is specifically for 0 °C, ΔG is for unspecified temperature
 - B) ΔG gives the spontaneity of a reaction, ΔG° does not
 - C) ΔG^{o} is for specific amounts of reactant and product, ΔG is for unspecified amounts
 - D) for a given reaction, they will be of opposite signs
 - E) ΔG includes entropy, ΔG° does not
- 14. Given this reaction: $A(g) \neq B(g)$ Starting with equal amounts of A and B, if the rate of the forward reaction is greater than the rate of the reverse, then when the reaction reaches equilibrium:
 - A) K > 1 B) K = 1 C) K < 1
- 15. Given this reaction: $C(g) \neq D(g)$ where the reaction is exothermic When the reaction reaches equilibrium, then:
 - A) $E_a(f)$ will be greater than $E_a(r)$ B) $E_a(f)$ and $E_a(r)$ will be equal
 - C) $E_a(f)$ will be less than $E_a(r)$
- 16. You are in charge of the following equilibrium:

 $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightleftharpoons 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(g) \qquad \Delta H = -908 \text{ kJ}$ If you want to increase the amount of O₂ present, you would

- A) add H₂O and increase the temperature
- B) add H₂O and decrease the temperature
- C) remove H_2O and increase the temperature
- D) remove H_2O and decrease the temperature

17. When one mole of dinitrogen reacts with one mole of dioxygen to produce two moles of nitrogen oxide, the value of ΔH is +200 kJ.

What is ΔH for the following reaction?

 $4 \text{ NO} \rightarrow 2 \text{ N}_2 + 2 \text{ O}_2$ A) -200 kJ B) -400 kJ C) +200 kJ D) +400 kJ

18. Which of the following statements is true concerning the solution process?

- A) When intermolecular interactions in the solute are broken, energy is absorbed; when solute particles enter solvent cavities, energy is released
- B) When intermolecular interactions in the solute are broken, energy is absorbed; when solute particles enter solvent cavities, energy is absorbed
- C) When intermolecular interactions in the solute are broken, energy is released; when solute particles enter solvent cavities, energy is released
- D) When intermolecular interactions in the solute are broken, energy is released; when solute particles enter solvent cavities, energy is absorbed

PLACE YOUR ANSWERS FOR #19-20 DIRECTLY ON THIS PAPER

19. (5 points each) In the space below each chemical equation, write an expression for K for each of the following equilibria:

a) $2 \text{ HI}(g) \neq H_2(g) + I_2(g)$ b) $\text{CaF}_2(s) + 2 \text{ H}^{1+}(aq) \neq \text{Ca}^{2+}(aq) + 2 \text{ HF}(aq)$

20. (10 points) **SET UP this problem,** showing the numbers you would use. You will be graded on your setup, not a final answer. How many grams of $Ca(NO_3)_2$ ($M_m = 164$ g/mol) are required to make 1500 mL of 0.55 M solution?